Из чего состоит плазменный телевизор?

Плазменный телевизор + устройство принцип действия

Плазменный телевизор: устройство, принцип действия, отличие от других систем

Благодаря физике на уровне школьного курса, достаточно многие потенциальные владельцы телевизоров должны знать — вещества в природе могут иметь три основных состояния: твёрдое, жидкое, газообразное. Однако если подняться выше школьной физики, есть шанс познакомиться с плазмой (или более того — с конденсатом Бозе-Эйнштейна). Далеко немногим известно, что такое плазма и как связано состояние плазмы с твёрдыми веществами, жидкостями и газами? Что же, плазменный телевизор – точнее конструкция экрана современного телевизионного приёмника, поможет раскрыть загадку.

Как образуется плазма телевизионного экрана?

Если взять и нагреть кусок льда, представляющий твёрдое состояние вещества, получится вода – жидкое состояние вещества. Продолжением нагрева легко получить пар – газообразное состояние. Чем больше тепла прикладывается, тем больше поступает энергии, тем энергичнее движутся молекулы (атомы).

Относительно твёрдое вещество, например, вода, характеризуется тесной связью молекул между. При этом молекулам доступна фаза движения (поэтому вода течёт). Состояние пара (газообразная вода) отмечается большей свободой молекул — энергией рассеивания, благодаря чему пар заполняет всё доступное пространство.

Однако если продолжать нагревать пар, молекулы и атомы начинают распадаться с последующим высвобождением части электронов. В моменты распада атомов подобным образом, формируются положительно заряженные частицы — ионы.

Смешивание ионов, обладающих плюсовым зарядом, с отрицательно заряженными электронами, способствует образованию состояния проводимости электричества. Вещество в таком состоянии – это и есть плазма, особый тип газа, где часть атомов становится ионами (ионизированный газ).

Процессы преобразования вещества до состояния плазмы

Процессы изменения состояния вещества: 1 – твёрдое; 2 – жидкое; 3 – парообразное; 4 – плазменное; А – атом; Я – ядро; Э – электрон; Т – нарастающая температурная шкала

Как формируется картинка плазменного экрана телевизора?

Вероятно многим знакомы энергосберегающие люминесцентные лампы (CFL – Compact Fluorescent Lamp), а также неоновые лампы (уличные фонари). Оба типа приборов излучают свет за счёт передачи электричества сквозь область газа. Так вот, плазменный экран телевизора, по сути, состоит из миллионов микроскопических CFL (или неоновых ламп), каждая из которых управляется электронной схемой.

Так осуществляется контроль и управление отдельными пикселями (подсветка цветных точек) на экране телевизора. На этом базовом принципе построен плазменный телевизор, и этот же принцип существенно отличает плазменную технологию от других видов телевизионных технологий. Например, в случае с LCD экраном (жидкокристаллический телевизор) включение / выключение пикселей активирует световой луч, проходящий через поляризационные кристаллы.

Пиксельные элементы плазменного экрана телевизора имеют некие общие черты с неоновыми лампами (или CFL). Как и в случае с неоновой лампой, каждая ячейка заполнена небольшим количеством неонового или ксенонового газа. Аналогично CFL, каждая ячейка покрыта внутри фосфорными химикатами. Внутри CFL люминофор представляет собой меловое белое покрытие на внутренней стороне стеклянной трубки и работает подобно фильтру.

Компактные флуоресцентные лампы

Примерно такие же «лампочки» составляют внутреннюю структуру плазменного экрана телевизора, с одной лишь разницей в размерах и цветовой окраски

Когда электричество течет через стеклянную трубку, атомы газа рассеиваются внутри и генерируют невидимый ультрафиолетовый свет. Белое люминофорное покрытие стенок трубки превращает невидимый ультрафиолет в видимый белый свет.

Внутри плазменного экрана телевизора ячейки напоминают структуру CFL, с той лишь разницей, что покрытие каждой отдельной ячейки выполнено люминофорами либо красного, либо синего, либо зелёного цвета.

Соответственно, работа ячейки заключается в том, чтобы использовать невидимый ультрафиолетовый свет, генерируемый неоновым или ксеноновым газом внутри ячейки, и преобразовать в красное, синее, зелёное видимое свечение. Комбинация этих базовых цветов традиционно формирует рабочий оттенок на участке экрана.

Конструктивное исполнение плазменного экрана ТВ

Подобно изображению жидкокристаллического экрана телевизора, картинка, полученная на плазменном экране телевизора, состоит из массива (сетки) красных, зелёных, синих пикселей (микроскопических точек или квадратов). Каждый пиксель включается или выключается индивидуально сеткой, сформированной горизонтально и вертикально установленными электродами.

Плазменный телевизор: структурная схема экрана

Структура плазменного экрана телевизора: 1 – слой диэлектрика; 2 – электрод; 3 – слой оксида магния; 4 – технологическое ребро; 5 – пиксели; 6 – фосфорное покрытие; 7 – электрод «адресный»: 8 – адресный защитный слой; А – переднее стекло; В – заднее стекло

Рассмотрим, как активируется, например, один из красных пикселей? Пара электродов, подведённых к пиксельной ячейке, создают высокое напряжение, вызывая ионизацию с последующим излучением ультрафиолетового света (невидим непосредственно на панели телевизора).

Ультрафиолетовый свет проникает через красное люминофорное покрытие на внутренней стороне пиксельной ячейки. Фосфорное покрытие преобразует невидимый ультрафиолет в видимый красный свет, благодаря чему пиксель загорается, высвечивая на экране отдельный красный квадрат (точку).

Xraydisk Sata3 SSDСмартфон Xiaomi POCO M3 RUАвтомобильное пусковое устройство Baseus

Чем различаются плазменный и LCD экраны телевизора?

Плазменные и жидкокристаллические телевизоры внешне очень схожи, но технологически работают совершенно по-разному. Телевизоры с плазменными экранами, как правило, стоят значительно дороже LCD конструкций. Спрашивается — почему бы не купить телевизор с LCD-экраном? Однако высокая цена плазмы обусловлена лучшим качеством картинки.

Главное отличие плазмы и ЖК отмечается в конструктивном исполнении рабочей ячейки. Составляющие экран пиксели плазменного экрана телевизора включаются и выключаются на несколько порядков быстрее, чем пиксели экрана ЖК телевизора. Пользователь получает более чёткие картины экрана с минимальным эффектом размытия. Особенно явно разница заметна на быстро меняющихся изображениях.

Разница между картинкой плазменного телевизора и LCD

Объективная разница картинки телевизионных приёмников разной конструкции: А – плазменный экран телевизора; В – жидкокристаллический экран телевизора

Правда, последние разработки жидкокристаллической телевизионной техники демонстрируют рост скорости включения / выключения пикселей. Тем не менее, «перещеголять» плазменные экраны пока что не удаётся. Плазменные экраны телевизоров светят ярче, обладают более высокой контрастностью, что видится важным фактором просмотра телевизора, к примеру, в условиях яркого дневного света.

Пользователям доступен просмотр картинки на плазменной матрице под более широким углом, без риска получить искажения цветов как это явно заметно на панели ЖК телевизора. Поэтому, с точки зрения качества изображения, плазма выглядит более предпочтительной для широкой аудитории потенциальных пользователей.

Между тем, плазменный телевизор не лишён технических недостатков. Среди выраженных и значимых недостатков конструкции:

  • высокое потребление энергии,
  • повышенный вес,
  • свойство хрупкости матрицы.

Телевизионным приёмникам с плазменным исполнением также присущи дефекты «прожига» матрицы, когда длительное время не меняющееся изображение способно привести к физическому выгоранию пикселя.

Тенденция скорого «выгорания» пикселей матрицы по причине чрезмерного использования, более выражена, чем у LCD-матриц. Правда, согласно утверждениям производителей, полный гарантийный срок техника с плазменной матрицей обязательно отработает.

Заключительный штрих на плазменный телевизор

Постепенно телевизионные приёмники с плазменной технологией дешевеют. При этом конструкции на жидких кристаллах стабильно наращивают скорость переключения пикселей. Таким образом, конкуренция технологий активно продолжается, а пользователем на выбор предлагаются обе технологии для обычного домашнего просмотра.

Вместе с тем за последние несколько лет две проверенные и вполне надёжные технологии дополнились OLED-телевизорами (на органических светодиодах). Такое конструкционное исполнение отличает более тонкая (в прямом смысле) структура матрицы.

Экраны OLED телевизионных приёмников превосходят плазменные и LCD матрицы по яркости, дают более чистый чёрный цвет. Переход на OLED технологию очевиден, учитывая более качественное и быстрое воспроизведение изображения.

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Устройство и принцип работы плазменной панели

«У меня дома ПЛАЗМА«, — не правда ли, красиво звучит, под этим понимается что-то очень большое и красивое Сейчас «плазмой» дразнят практически все плоские телевизоры, даже маленькие. Согласитесь, слово «плазма» звучит гораздо круче, чем ЖК или LCD, LED (какой-то непонятный набор букв ), этим и объясняется подсознательная тяга к чему-то такому огромному и завораживающе-непонятному слову плазма. И действительно, когда видишь перед собой такою плазменную панель:

Плазменная панель

то стоишь перед ней и не понимаешь, почему она ещё не у меня дома? Ну что ж, давайте всё-таки разберёмся, что же такое плазменная панель и как она работает. Кто не очень сильно храпел на уроках физики, помнит, что вещество (вода, к примеру или металл. ) может находится в трёх состояниях: твёрдом (лёд), жидком (вода) или газообразном (пар), так вот, плазма — это четвёртое состояние вещества. Она представляет собой ионизированный газ (газ, в котором очень много заряженных частичек, как воздух после грозы, только гораздо сильнее)

Если в газ (нейтральный) запустить очень много электронов (они имеют отрицательный заряд «-«), они будут сталкиваться с атомами газа и выбивать из них другие электроны. Атом, потеряв электроны, становится ионом (имеет положительный заряд «+»). Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы притягиваются друг к другу, столкновения «возбуждают» атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов.

В плазменных панелях используются в основном инертные газы — неон и ксенон. В состоянии «возбуждения» они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза, однако, его можно использовать для высвобождения фотонов видимого спектра

Патент на изобретение «плазменной панели», хотя правильнее говорить «плазменного дисплея» был выписан в 1964 на имена трёх человек: Дональда Битцера, Жене Слоттова и Роберта Вильсона. Первый плазменный дисплей состоял всего из одного пикселя (. ), естественно, что из него никакого изображения, кроме точки, получить было нельзя, тут был важен сам принцип. Не прошло и десяти лет, как приемлемые результаты были достигнуты, в 1971 году фирме Owens-Illinois была продана лицензия на производство дисплеев Digivue.

Читайте также  Как связать айфон с телевизором lg?

В 1983 году Университет Иллинойса заработал ни много ни мало, миллион долларов за продажу лицензии «на плазму» компании IBM — сильнейшему игроку, на то время, в области компьютерных технологий. Перед Вами модель 1981 года «PLATO V«, с монохроматическим дисплеем оранжевого свечения:

Первый плазменный монитор

Всё бы хорошо, да только LCD дисплеи, появившиеся в начале 90-х, стали уверенно вытеснять «плазму» с рынка. К сожалению, создать маленькие пиксели (как у LCD) было не так просто, да и яркость с контрастностью оставляли желать лучшего

Никто не знает, чтобы было дальше, если бы технологией плазменных панелей не занялась компания «Matsushita«, известная сейчас как «Panasonic«. В 1999 году был, наконец, создан, перспективный 60-дюймовый прототип с замечательными яркостью и контрастностью, превосходящими их «жидкокристаллические» аналоги Вот как выглядит плазменный телевизор без задней крышки:

Схемотехника плазменного телевизора

Давайте посмотрим, как устроена плазменная панель и каким образом она работает. В плазменных панелях ксенон и неон содержится в сотнях маленьких микрокамер, расположенных между двумя стеклами. С обеих сторон, между стеклами и микрокамерами, располагаются два длинных электрода. Управляющие электроды расположены под микрокамерами, вдоль тылового стекла. Прозрачные сканирующие электроды, окруженные слоем диэлектрика и покрытые защитным слоем оксида магния, расположены над микрокамерами, вдоль фронтального стекла

Электроды расположены крест-накрест во всю ширину экрана. Сканирующие электроды расположены горизонтально, а управляющие электроды – вертикально. Как вы можете видеть ниже, на диаграмме, вертикальные и горизонтальные электроды формируют прямоугольную сетку. Для ионизации газа в определенной микрокамере, процессор заряжает электроды непосредственно на пересечении с этой микрокамерой. Тысячи подобных процессов происходят за долю секунды, заряжая по очереди каждую микрокамеру.

Разряд и свечение в плазме

Когда пересекающиеся электроды заряжены (один отрицательно, а другой положительно), через газ в микрокамере проходит электрический разряд. Как было сказано ранее, этот разряд приводит заряженные частицы в движение, вследствие чего атомы газа испускают фотоны ультрафиолета, которые, в свою очередь, заставляют светиться фосфорное покрытие микрокамер, выбивая из них фотоны основных видимых цветов.

Каждый пиксель плазменной панели состоит из трёх микрокамер (субпикселей): красного зелёного и синего (как в кинескопных телевизорах), чем меньше размер пикселей в дисплее, тем более чётким получается изображение

Плазменные дисплеи отличаются хорошей яркостью, чёткостью и красивой цветопередачей. В отличии от LCD и LED (жидкокристаллических дисплеев), которые работают на «просветку», плазма светит сама, обеспечивая красивый и глубокий чёрный цвет и замечательную контрастность изображения практически с любого угла обзора. Цифровых тормозов и глюков на ней практически незаметно, однако, разер пикселей немного больше, чем у ЖК, поэтому размер плазменной панели (обычно) начинается от 32 дюймов

К недостаткам плазмы можно отнести немалую стоимость и большое потребление электроэнергии. Если у Вас дома есть маленькие дети, учтите, что одного удара мячиком или другой игрушкой может быть достаточно для того, чтобы вся плазменная панель отправилась на свалку (там нет 5-10 сантиметрового стекла перед экраном, как в кинескопах)

Частые вопросы: выгорают ли пиксели на плазме и радиоактивное излучение? Ультрафиолет действительно опасен, но, благодаря переднему защитному стеклу, величина его опасности равна нулю. Вы пробовали позагорать за стеклом? Тут тоже самое, стекло не пропускает ультрафиолетовые лучи, поэтому опасаться абсолютно нечего. Выгорание пикселей — хоть многие утверждают, что его нет, но оно есть, поэтому не нужно долгое время оставлять неподвижную картинку на экране (долго — это несколько дней, за час-два ничего не случится)

Помните, что телевизор с плазменной панелью, какой бы он не был хороший, тоже может выйти из строя, а его ремонт — вещь весьма сложная и недешёвая, покупая такого красавца, как на картинке, будьте готовы к его соответствующему обслуживанию.

Плазменные панели

Рискнем предположить, что подавляющая часть наших читателей дома или на работе пользуется самыми обычными мониторами с электронно-лучевой трубкой. Но постепенно, всё более и более популярными становятся так называемые жидкокристаллические дисплеи. Преимущества последних перед первыми очевидны: ЖК-экран занимает мало места на рабочем столе, он легкий, потребляет значительно меньше электроэнергии, по сравнению с ЭЛТ-монитором, и менее опасен для здоровья человека. Но все же главным недостатком всех экранов, работающих с применением жидких кристаллах, на сегодняшний день, является их ограниченный размер. То есть получается, что чем меньше ЖК экран, тем более он выгоден по соотношению цена/качество: дешевыми электронными часами с небольшим дисплеем удивить кого-либо очень сложно. С другой стороны, при производстве 15-дюймовой ЖК-матрицы используются те же самые физические свойства жидких кристаллов, что и при изготовлении самых обычных наручных часов. Но создать цветную ЖК-матрицу имеющую порядка трехсот тысяч точек (при разрешении 800х600), обойдется на много дороже, нежели монохромный дисплей сотового телефона.

Как раз в этом-то и заключается самая большая проблема ЖК-матриц — чем больше диагональ матрицы, тем менее надежным, более сложным и, что самое важное, дорогим получается конечный продукт. Сейчас уже просто не выгодно делать большие экраны данного типа: покупателю намного проще и дешевле установить тяжелый, но относительно недорогой ЭЛТ-монитор.

К счастью, прогресс не стоит на месте и уже сейчас не нужно быть миллионером, чтобы купить плоский телевизор с диагональю 40 дюймов (хотя и придется выложить достаточно круглую сумму).Подобные устройства принято называть «плазменными». Главное достоинство плазменного дисплея — низкая стоимость матрицы большого диаметра. Здесь ситуация повторяет случай с ЖК-мониторами с точностью до наоборот: чем больше размеры матрицы, тем выгоднее производителю ее создавать. Судите сами: подавляющая часть всех телевизоров и мониторов с диагональю более 21 дюйма — плазменные. Поэтому не стоит удивляться, тому, что плазменный телевизор с диагональю, например, 24 дюйма не намного дешевле (а иногда и дороже), телевизора с 40-дюймовой матрицей. В этом случае цену определяет начинка каждой конкретной модели, возможность подключения к компьютеру, наличие не только цифрового, но и аналогового разъема.

Принцип работы любого плазменного экрана (PDP — Plasma Display Panel) состоит в управляемом холодном разряде разряженного газа (как правило, используется ксенон или неон), находящегося в ионизированном состоянии. Все это носит название «холодная плазма» — отсюда и взялось и название.

Способность определенных газов светиться при пропускании через них разряда электрического тока до сих пор широко применяется в так называемых вывесках неоновой рекламы. Для этого создаются герметичные сосуды определенной формы (как правило, изображающие рекламируемый товар или в виде букв), после чего емкость заполняется газом. Если подавать на контакты электрический ток, то газ внутри рекламы начинает светиться. При прекращении подачи тока газ светиться перестает. Цвет свечения вывески зависит от того, в какой пропорции будут смешиваться определенные газы.

Аналогичный принцип используется и в создании плазменных дисплеев для компьютеров и телевизоров с большой диагональю. Только размеры сосуда, в котором храниться газ в тысячи раз меньше, а сами сосуды, которых насчитывается десятки миллионов, образуют матрицу, формирующую изображение на экране.

Минимальной единицей изображения на экране, как и везде, является точка, или пиксель. В плазменном мониторе для формирования цвета каждой отдельно взятой точки используется комбинация из трех субпикселей, каждый из которых отвечает за один из трех основных цветов RGB (Red Green Blue — Красный, Зеленый, Голубой). Ячейки находятся между двумя стеклами, расстояние между которыми 0,1 мм (100 микрон). Во время подачи электрического импульса на электроды часть заряженных ионов начинают излучать кванты света в ультрафиолетовом диапазоне. Диапазон излучения, в большинстве случаев, зависит от применяемого газа, в каждой конкретной модели. Ультрафиолетовые лучи действуют на специальное флюоресцирующее покрытие, которое в свою очередь излучает свет, видимый человеческим глазом. Кстати, ультрафиолетовые лучи очень опасны для глаз человека, но в данном случае бояться нечего — до 97% вредного излучения поглощает наружное стекло. Яркость и насыщенность цветов можно регулировать простым изменением величины управляющего напряжения: чем оно больше, тем больше квантов света выделяет газ, тем сильнее светится флюоресцирующая пленка, тем ярче мы получаем картинку на экране.

Данная технология самая молодая из всех, что применяются в серийном производстве офисной техники, но, что интересно, разрабатывается уже относительно давно. Так еще в далекие советские времена в НПО «Плазма» пытались воплотить в жизнь идею получения более-менее качественного изображения на табло, состоящим из элементов, наполненных специальным газом. Но специалисты не смогли создать пиксели малых размеров, из-за этого экран получался слишком большим, тяжелым, ненадежным, а изображение — слишком расплывчатым.

Всерьез разработкой технологии создания плазменных дисплеев занялись в 1966 году в одном американском университете в штате Иллинойс. Вскоре после завершения исследований, в начале 70-х годов, небольшая компания Owens-Illinois смогла запустить проект в коммерческое использование.

Тогда спрос на плазменные панели был очень небольшим. Главным образом отсутсвие спроса объяснялось тем, что экраны были монохромными (отображали только два цвета), очень дорого стоили (даже для крупных организаций) и были практически бесполезны для использования их в быту. Первую партию дисплеев заказала Нью-йоркская Фондовая Биржа — ей были необходимы экраны большой площади, способные информировать огромное количество людей об изменении котировок акций, а качества изображения было не столь критично.

Читайте также  Можно ли восстановить матрицу ЖК телевизора?

Современные плазменные дисплеи претерпели большое количество изменений, их качество заметно изменилось, если сравнивать с теми, что производили много лет назад. Сейчас изображение на плазменном экране считается самым ярким (до 500 кд/м2) и контрастным (400:1), даже лучше чем у классических ЭЛТ-мониторов. Сравните: яркость и контрастностью дорогого монитора — 350 кд/м2 и 200:1 соответственно.

Благодаря особенностям исполнения плазменные экраны не боятся электромагнитных полей. Возможно, владельцы мощных колонок замечали изменение цвета рабочего стола на своем ЭЛТ-мониторе, когда пытались устанавливать аудио-систему рядом с компьютером. У PDP-мониторов такой проблемы не может существовать в принципе: внутри просто нет элементов, на которые могло бы повлиять магнитное поле. Поэтому рядом с плазменным телевизором всегда можно спокойно устанавливать самые хорошие, мощные колонки и наслаждаться качественным звуком не отходя от любимого ПК.

Из недостатков такого типа дисплеев стоит отметить очень высокое энергопотребление. Чтобы зажечь один пиксель на экране плазменного телевизора электроэнергии требуется незначительное количество, но матрица состоит из миллионов точек, каждой из которых приходится гореть до нескольких десятков часов подряд. Частично из-за этого плазменным дисплеям закрыт путь в область портативной техники: ноутбук от собственных аккумуляторов с таким экраном вряд ли проработает даже час: применение плазменного экрана само собой подразумевает наличие электрической розетки в радиусе нескольких метров. Но даже если решить проблему с источником питания, изготавливать плазменные матрицы с диагональю менее двадцати дюймов не выгодно экономически: представьте себе карманный компьютер ценой несколько тысяч долларов работающий только от сети, но имеющий очень контрастный и яркий экран. Не думаем, что подобная модель будет пользоваться ажиотажным спросом на рынке, тем более, что и ЖК-экраны с каждым днем становятся все лучше и лучше, да к тому же они значительно более бережливо относятся к источнику питания.

Также плазменные экраны имеют относительно небольшой срок эксплуатации, по крайней мере, по сравнению с аналогами, — порядка 10 тысяч часов непрерывной работы. Хотя многим и этого будет вполне достаточно, ведь эти 10 тысяч часов истекут только через шесть лет функционирования аппарата при 4-5 часах ежедневного просмотра телепередач (если дисплей использовать в качестве телевизора). Правда с каждым днем этот недостаток становится все менее и менее актуальным — многие производители уже сегодня предлагают довольно эффективные пути решения этой проблемы.

Во многом плазменные экраны напоминают жидкокристаллические. Разница состоит лишь в способе формирования цвета отдельной точки. У плазменного дисплея, как и у ЖК, нет никаких проблем ни со сведением лучей, ни проблем с геометрией экрана, ни с фокусировкой. Они не страдают от вибрации (если у вас дома системный блок стоит рядом с ЭЛТ-монитором, то вы, наверное, замечали легкую вибрацию на экране, когда активно работает жесткий диск или привод компакт-дисков), все PDP имеют абсолютно плоскую внешнюю поверхность.

Кажется, что плазменные матрицы унаследовали у своих предшественников только достоинства — они лишены недостатков присущих ЖК. Так, плазменные дисплеи имеют малое время отклика (чем до сих пор не могут похвастаться многие дисплеи дешевых КПК и ноутбуков), то есть время между посылкой сигнала и фактической сменой картинки на экране достаточно небольшое. Этот факт позволяет без проблем использовать PDP в качестве телевизоров и играть в быстрые игры, при подключении дисплея к компьютеру. Плазменные экраны полностью цифровые, аналоговый выход для подключения к настольному компьютеру — это скорее исключение, нежели правило. Возможно, многие знают, что главным недостатком ЖК-мониторов является значительное ухудшение качества изображения на экране при смене угла просмотра. Плазменные экраны, обладая всеми достоинствами ЖК, лишены этого недостатка. Здесь они могут дать фору даже самым дорогим и качественным ЭЛТ-экранам: у многих моделей угол видимости достигает 160 градусов.

Более подробно про устройство плазменных телевизоров

Даже самая современная технология когда нибудь должна уйти с рынка. Появляются все новые и новые решения, одно лучше другого. Сначала были кинескопные телевизоры, теперь их теснят плазменные панели. В последние 75 практически ничего не менялось — подавляющее большинство телевизоров выпускалось на базе одной технологии — т. н. электронно-лучевой трубки (ЭЛТ). В таком телевизоре `электронная пушка` испускает поток отрицательно заряженных частиц (электронов), проходящий через внутреннее пространство стеклянной трубки, т. е. кинескопа. Электроны `возбуждают` атомы фосфорного покрытия на широком конце трубки (экране), это заставляет фосфор светиться. Изображение формируется путем последовательного возбуждения различных участков фосфорного покрытия разных цветов, с различной интенсивностью.

Используя ЭЛТ, можно создавать четкие изображения с насыщенным цветом, однако имеется серьезный недостаток — кинескоп выходит слишком громоздким. Для того, чтобы увеличить ширину экрана в ЭЛТ-телевизоре, необходимо увеличить и длину трубки. В результате любой ЭЛТ-телевизор с большим экраном должен весить добрые несколько центнеров. Сравнительно недавно, в 90-е гг прошлого века на экранов магазинов появилась альтернативная технология — плоскопанельный плазменный дисплей. Такие телевизоры имеют широкие экраны, больше самых больших ЭЛТ, при этом они всего около 15 см. в толщину. `Бортовой компьютер` плазменной панели последовательно зажигает тысячи и тысячи крошечных точек-пикселей. В большинстве систем покрытие пикселей использует три цвета — красный, зеленый и синий. Комбинируя эти цвета телевизор может создавать весь цветовой спектр. Таким образом, каждый пиксель создан из трех ячеек, представляющих собой крошечные флуоресцентные лампы. Как и в ЭЛТ-телевизоре, для создания всего многообразия оттенков цветов меняется интенсивность свечения ячеек. Основа каждой плазменной панели — это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц. Отдельные атомы газа содержат равное число протонов (частиц с положительным зарядом в ядре атома) и электронов. Электроны `компенсируют` протоны, таким образом, что общий заряд атома равен нулю. Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион. Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.

Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя из высвобождать энергию в виде фотонов. В плазменных панелях используются в основном инертные газы — неон и ксенон. В состоянии `возбуждения` они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза. Тем не менее, ультрафиолет можно использовать и для высвобождения фотонов видимого спектра. Внутри дисплея В плазменном телевизоре `пузырьки` газов неона и ксенона размещены в сотни и сотни тысяч маленьких ячеек, сжатых между двумя стеклянными панелями. Между панелями по обеим сторонам ячеек расположены также длинные электроды. `Адресные` электроды находятся за ячейками, вдоль задней стеклянной панели. Прозрачные электроды покрыты диэлектриком и защитной пленкой оксида магния (MgO). Они располагаются над ячейками, вдоль передней стеклянной панели. Обе `сетки` электродов перекрывают весь дисплей. Электроды дисплея выстроены в горизонтальные ряды вдоль экрана, а адресные электроды расположены вертикальными колонками. Как видно на рисунке ниже, вертикальные и горизонтальные электроды формируют базовую сетку.

Для того, чтобы ионизировать газ в отдельной ячейке, компьютер плазменного дисплея заряжает те электроды, которые на ней пересекаются. Он делает это тысячи раз за малую долю секунды, заряжая каждую ячейку дисплея по очереди. Когда пересекающиеся электроды заряжены, через ячейку проходит электрический разряд. Поток заряженных частиц заставляет атомы газа высвобождать фотоны света в ультрафиолетовом диапазоне. Фотоны взаимодействуют с фосфорным покрытием внутренней стенки ячейки. Как известно, фосфор — материал, под действием света сам испускающий свет. Когда фотон света взаимодействует с атомом фосфора в ячейке, один из электронов атома переходит на более высокий энергетический уровень. После чего электрон смещается назад, при этом высвобождается фотон видимого света.

Пиксели в плазменной панели состоят из трех ячеек-субпикселей, каждая из которых имеет свое покрытие — из красного, зеленого или синего фосфора. В ходе работы панели эти цвета комбинируются компьютером, создаются новые цвета пикселя. Меняя ритм пульсации тока, проходящего через ячейки, контрольная система может увеличивать или уменьшать интенсивность свечения каждого субпикселя, создавая сотни и сотни различных комбинаций красного, зеленого и синего цветов. Главное преимущество производства плазменных дисплеев — возможность создавать тонкие панели с широкими экранами. Поскольку свечение каждого пикселя определяется индивидуально, изображение выходит потрясающе ярким, причем при просмотре под любым углом. В норме насыщенность и контрастность изображения несколько уступает лучшим моделям ЭЛТ-телевизоров, но вполне оправдывает ожидания большинства покупателей. Главный недостаток плазменных панелей — их цена. Дешевле пары тысяч долларов новую плазменную панель купить невозможно, модели hi-end класса обойдутся в десятки тысяч долларов. Впрочем, с течением времени технология значительно усовершенствовалась, цены продолжают падать. Сейчас плазменные панели начинают уверенно теснить ЭЛТ-телевизоры. особенно это заметно в богатых, технологически развитых странах. В ближайшем будущем `плазма` придет в дома даже небогатых покупателей. Описание работы плазмы другими словами Плазменные панели немного похожи на ЭЛТ-телевизоры — покрытие дисплея использует способный светиться фосфоросодержащий состав. В то же время они, как и LCD, используют сетку электродов с защитным покрытием из оксида магния для передачи сигнала на каждый пиксель-ячейку. Ячейки заполнены интернтыми, т. н. `благородными` газами — смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму — т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. Будучи электрически нейтральной, плазма содержит равное число электронов и ионов и является хорошим проводником тока. После разряда плазма испускает ультрафиолетовое излучение, заставляющий светиться фосфорное покрытие ячеек-пикселей. Красную, зеленую или синюю составляющую покрытия.

Читайте также  На что обратить внимание при выборе телевизора?

На самом деле каждый пиксель делится на три субпикселя, содержащих красный, зеленый либо синий фосфор. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` — при помощи 8-битной испульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков. Тот факт, что плазменные панели сами являются источником света, обеспечивает отличные углы обзора по вертикали и горизонтали и великолепную цветопередачу (в отличие от, например, LCD, экраны в которых обычно нуждаются в подсветке матрицы). Впрочем, обычные плазменные дисплеи в норме страдают от низкой контрастности. Это обусловлено необходимостью постоянно подавать низковольтный ток на все ячейки. Без этого пиксели будут `включаться` и `выключаться` как обычные флуоресцентные лампы, то есть очень долго, непозволительно увеличивая время отклика. Таким образом, пиксели должны оставаться выключенными, в то же время испуская свет низкой интенсивности, что, конечно, не может не сказаться на контрастности дисплея. В конце 90-х гг. прошлого века Fujitsu удалось несколько смягчить остроту проблемы, улучшив контрастность своих панелей с 70:1 до 400:1. К 2000 году некоторые производители заявляли в спецификациях панелей контрастность до 3000:1, сейчас — уже 10000:1+. Процесс производства плазменных дисплеев несколько проще, чем процес производства LCD. В сравнении с выпуском TFT LCD-дисплеев, требующим использования фотолитографии и высокотемпературных технологий в стерильно чистых помещениях, `плазму` можно выпускать в цехах погрязнее, при невысоких температурах, с использованием прямой печати. Тем не менее, век плазменных панелей недолог — совсем недавно среднестатистический ресурс панели равнялся 25000 часов, сейчас он почти удвоился, но проблему это не снимает. В пересчете на часы работы плазменный дисплей обходится дороже LCD. Для большого презентационного экрана разница не очень существенная, однако, если оснастить плазменными мониторами многочисленные офисные компьютеры, выигрыш LCD становится очевидным для компании-покупателя. Ремонт телевизоров с плазменными дисплеями довольно дорог. Еще один важный недостаток `плазмы` — большой размер пикселей. Большинство производителей неспособны создавать ячейки менее 0,3 мм — это больше, чем зерно стандартного компьютерного монитора. Непохоже, чтобы в ближайшем будущем ситуация изменилась к лучшему. На среднесрочную перспективу такие плазменные дисплеи подойдут в качестве домашних телевизоров и презентационных экранов до 70+ дюймов размером. Если `плазму` не уничтожат LCD и появляющиеся каждый день новые дисплейные технологии, через какой-нибудь десяток лет она будет доступна любому покупателю.

Информация о материале Автор: Бойко Руслан Технический центр Москва 84953695454 Опубликовано: 29 июня 2011 Обновлено: 23 апреля 2020 Создано: 29 июня 2011 Просмотров: 15201

Сайт Виктора Королева

Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками

Плазменная панель: устройство, принцип работы, возможные неисправности

Плазменная панель: устройство, принцип работы, возможные неисправности

Плазменные экраны (их иногда называют панелями) известны большинству потребителей по работе в современной вычислительной технике и телевизионных приемниках. Обычно с их помощью удается получить качественное изображение, недостижимое никакими другими средствами отображения. Несмотря на заявленную производителем высокую надежность эти высокотехнологичные изделия все же нередко ломаются. В ряде случаев вернуть плазменную панель в рабочее состояние удается без привлечения специалистов.

Устройство и порядок формирования изображения

Основой конструкции современной плазменной панели является так называемая «матрица», которая набирается из множества герметичных ячеек микронного размера (ее фото приведено ниже).

В процессе производства они наполняются особым инертным газом (в этом качестве обычно используются такие распространенные его разновидности как ксенон или неон). А при работе панели они управляются сигналами от стороннего встроенного в устройство модуля.

Важно! Каждая пиксель-ячейка, входящая в состав матрицы, представляет собой электрически зараженный конденсатор, к обкладкам которого подведены два электрода.

При поступлении управляющего высоковольтного напряжения скопившийся электрический разряд мгновенно ионизирует газы и переводит их в плазменное состояние.

Под ее воздействием в ячейках инициируется излучение в ультрафиолетовом диапазоне, а также в видимом спектре, которое после прохождения специального фильтра воспроизводит картинку на экране дисплея. Цветовая окраска конкретной ячейке придается путем деления ее на три более мелких пикселя, ответственных за формирование цветов основного спектра (красного, синего и зеленого). Интенсивность свечения каждого из них задается с блока управления панелью, в котором за эту функцию отвечает специальный видеопроцессор, формирующий 8-битовый импульсный код.

Характерные неполадки и их вероятные причины

Наиболее распространенные неисправности, часто встречающиеся в устройствах, оборудованных плазменными панелями, подразделяются на следующие виды:

  • Нарушение свечения экрана, проявляющееся в полном или частичном пропадании воспроизводимого ранее изображения.
  • Отсутствие хорошо различимой картинки (свечение в этом случае совсем не пропадает, а на экране видны одни лишь муары или характерные помехи).
  • Самопроизвольное отключение панели при работе воспроизводящего изображение устройства.
  • Механическое повреждение рабочей части дисплея.
  • Неисправность соединительных ленточек, подводящих к панели напряжение питание и сигналы управления.

Каждая из перечисленных неисправностей нуждается в более детальном рассмотрении.

Причиной нарушений в свечении экрана дисплея являются либо повреждения отдельных ячеек, или же пропадание управляющего сигнала, формируемого видеопроцессором.

Обратите внимание: Частный случай рассматриваемой неисправности – выгорание отдельных пикселей матрицы (обычно эта неполадка классифицируется как повреждение слоя люминофора).

В ситуации, когда различимо одно «белое» поле (изображение полностью отсутствует) неисправность может скрываться в узле генерирования и усиления сигнала с материнки (смотрите картинку ниже).

Самопроизвольное отключение панели в большинстве случаев происходит по причине перегрузок в БП устройства, в состав которого входит дисплей (это обычно случается из-за резкого всплеска тока в цепях питания).

Повреждение дисплея или же пропадание контактов в подводящем шлейфе устраняются простой заменой этих составляющих телевизора или ноутбука.

Алгоритм определения неисправности и ремонт

Специалистами по ремонту высокотехнологичной техники разработаны особые алгоритмы поиска характерных неисправностей, встречающихся при эксплуатации плазменной панели в составе отдельного устройства. Согласно этим разработкам ее нахождение увязывается с причиной возникновения данной неисправности. После такой привязки к конкретным аппаратным средствам обнаружить источник повреждения удается быстрее.

Дополнительная информация: Причиной большинства простейших неисправностей являются нарушения в функционировании инициирующего его работу блока питания (смотрите фото ниже)

Наличие напряжений, выдаваемых питающим модулем, проще всего проверить с помощью тестера, включенного в соответствующий режим измерений.

Они проверяются по типовой карте напряжений, прикладываемой к устройству, в состав которого входит поврежденная панель. Следующий шаг – это проверка наличия сигналов, поступающих с основной управляющей платы («MAIN-board»). Для этого удобнее всего воспользоваться осциллографом, имеющим высокую чувствительность и расширенный частотный диапазон. Только убедившись в наличии всех питающих напряжений и управляющих сигналов можно перейти к очередному этапу – обследованию и проверке соединительных шлейфов.

Непосредственный ремонт

Ремонт плазменных панелей с учетом выявленных неисправностей сводится к следующей последовательности действий:

— замена «нерабочих» модулей новыми блоками;

— при обнаружении механических повреждений или следов раскалывания потребуется полная замена всей панели;

— если причиной обнаруженной неисправности стали соединительные шлейфы – сначала следует попытаться восстановить пропавший контакт;

— в случае если и это не помогает – проще будет заменить ленточку новым соединительным элементом.

Обратите внимание: В ситуации, когда ни одно из предпринятых действий не приносит нужного результата – придется обратиться к специалистам.

В специализированной ремонтной мастерской при наличии нужной измерительной аппаратуры опытным мастерам найти и устранить обнаруженную неисправность будет намного проще.

В заключение отметим, что при ремонте плазменной панели следует быть очень осторожным и стараться не повредить ее чувствительные элементы (пиксели) случайным прикосновением к ним острыми предметами.

Все вопросы можете задавать в наших группах: ВКонтакте и в Одноклассниках

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: