Удельная теплоемкость что это

Удельная теплоёмкость

Уде́льная теплоёмкость — физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин.

Единицей СИ для удельной теплоёмкости является джоуль на килограмм-кельвин. Следовательно, удельную теплоёмкость можно рассматривать как теплоёмкость единицы массы вещества. На значение удельной теплоёмкости влияет температура вещества. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Формула расчёта удельной теплоёмкости: < mDelta t>» width=»» height=»» />, где

c» width=»» height=»» /> — удельная теплоёмкость,

Q» width=»» height=»» /> — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),

m» width=»» height=»» /> — масса нагреваемого (охлаждающегося) вещества,

Delta t» width=»» height=»» /> — разность конечной и начальной температур вещества.

Содержание

Значения удельной теплоёмкости некоторых веществ

Таблица I: Стандартные значения удельной теплоёмкости Внимание: Здесь указана удельная теплоёмкость с использованием единиц измерения температуры в Кельвинах(К).
Элемент Агрегатное состояние Удельная
теплоёмкость
Дж/(г·K)
воздух (сухой) газ 1,005
воздух (100 % влажность) газ 1,0301
алюминий твёрдое тело 0,930
бериллий твёрдое тело 1,8245
латунь твёрдое тело 0,377
олово твёрдое тело 0,218
медь твёрдое тело 0,385
сталь твёрдое тело 0,500
алмаз твёрдое тело 0,502
этанол жидкость 2,460
золото твёрдое тело 0,129
графит твёрдое тело 0,720
гелий газ 5,190
водород газ 14,300
железо твёрдое тело 0,444
свинец твёрдое тело 0,130
чугун твёрдое тело 0,540
вольфрам твёрдое тело 0,134
литий твёрдое тело 3,582
ртуть жидкость 0,139
азот газ 1,042
Нефтяные масла (фракция нефти) зависит от углеводородных составляющих жидкость 1,67 — 2,01
кислород газ 0,920
кварцевое стекло твёрдое тело 0,703
вода 373К (100 °C) газ 2,020
сусло пивное жидкость 3,927
вода жидкость 4,183
лёд твёрдое тело 2,060
Значения приведены для стандартных условий, если это не оговорено особо.

Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов

Вещество Агрегатное состояние Удельная
теплоёмкость
кДж*(кг −1 ·K −1 )
Объёмная
теплоёмкость
кДж*(дм³ −1 ·K −1 )
асфальт твёрдое тело 0,92 1,2
полнотелый кирпич твёрдое тело 0,84 1,344
силикатный кирпич твёрдое тело 1 1,7
бетон твёрдое тело 0,88 1,7
кронглас (стекло) твёрдое тело 0,67 1,709
флинт (стекло) твёрдое тело 0,503 2,1
оконное стекло твёрдое тело 0,84 2,1
гранит твёрдое тело 0,790 2,1
гипс твёрдое тело 1,09 2,507
мрамор, слюда твёрдое тело 0,880 2,4
песок твёрдое тело 0,835 1,2
сталь твёрдое тело 0,47 3,713
почва твёрдое тело 0,80
древесина твёрдое тело 1,7 1

См. также

Примечания

Литература

Ссылки

  • Термодинамика
  • Физические величины

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Удельная теплоёмкость» в других словарях:

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ — количество энергии, которое необходимо сообщить 1 г какого либо вещества, чтобы повысить его температуру на 1°С. По определению, для того чтобы повысить температуру 1 г воды на 1°С, требуется 4,18 Дж. Экологический энциклопедический словарь.… … Экологический словарь

удельная теплоёмкость — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heatSH … Справочник технического переводчика

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ — физ. величина, измеряемая количеством теплоты, необходимым для нагревания 1 кг вещества на 1 К (см. ). Единица удельной темплоёмкости в СИ (см.) на килограмм кельвин (Дж кг∙К)) … Большая политехническая энциклопедия

удельная теплоёмкость — savitoji šiluminė talpa statusas T sritis fizika atitikmenys: angl. heat capacity per unit mass; massic heat capacity; specific heat capacity vok. Eigenwärme, f; spezifische Wärme, f; spezifische Wärmekapazität, f rus. массовая теплоёмкость, f;… … Fizikos terminų žodynas

Удельная теплоёмкость — см. Теплоёмкость … Большая советская энциклопедия

удельная теплоёмкость — удельная теплота … Cловарь химических синонимов I

удельная теплоёмкость газа — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gas specific heat … Справочник технического переводчика

удельная теплоёмкость нефти — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном давлении — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant pressurecpconstant pressure specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном объёме — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant volumeconstant volume specific heatCv … Справочник технического переводчика

Удельная теплоемкость

Вам уже известно, что количество теплоты зависит от массы вещества, разности температур и рода вещества. Количество теплоты ($Q$) в СИ измеряется в джоулях ($Дж$).

Возьмем два тела одинаковой массы и температуры, но из разных веществ. Логично, что для их нагрева на $1 degree C$ потребуется разное количество теплоты. В этом случае у нас разный род веществ, из которых состоят тела. Здесь мы вводим новое понятие – удельная теплоемкость вещества.

В данном уроке мы рассмотрим это новое для нас определение, узнаем его физическое значение, познакомимся с удельной теплоемкостью различных веществ.

Удельная теплоемкость вещества

Удельная теплоемкость вещества – это физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой $1 space кг$ для того, чтобы его температура изменилась на $1 degree C$

Рассмотрим на примерах, как удельная теплоемкость характеризует вещество.

Возьмем $1 space кг$ воды и нагреем его на $1 degree C$ (рисунок 1).

Для этого нам понадобится $4200 space Дж$. Именно это количество теплоты и будет определять удельную теплоемкость воды.

А теперь нагреем на $1 degree C$ кусок свинца массой $1 space кг$ (рисунок 2).

В этот раз нам потребуется затратить $140 space Дж$. Это значение ожидаемо отличается от количества теплоты, затраченное на нагревание воды. Тем не менее, это количество теплоты так же будет характеризовать удельную теплоемкость свинца.

Единица измерения удельной теплоемкости

Удельная теплоемкость обозначается буквой $c$.

Измеряется удельная теплоемкость вещества в $frac<Дж><кг cdot degree C>$.

Рассмотрим эту единицу измерения на примере графита. Его удельная теплоемкость равна $750 frac<Дж><кг cdot degree C>$. Что это означает?

Из этого значения мы можем сказать, что:

  1. Для нагревания куска графита массой $1 space кг$ на $1 degree C$ нам необходимо затратить количество теплоты, равное $750 space Дж$
  2. При охлаждении куска графиты массой $1 space кг$ на $1 degree C$ будет выделяться количество теплоты, равное $750 space Дж$
  3. При изменении температуры куска графита массой $1 space кг$ на $1 degree C$ он будет или поглощать, или выделять количество теплоты, равное $750 space Дж$

Табличные значения удельной теплоемкости

Существуют уже известные значения удельной теплоемкости различных веществ. Они представлены таблице 1.

Вещество $c, frac<Дж><кг cdot degree C>$ Вещество $c, frac<Дж><кг cdot degree C>$
Золото 130 Песок 820
Ртуть 140 Стекло 840
Свинец 140 Кирпич 880
Олово 230 Алюминий 920
Серебро 250 Масло подсолнечное 1700
Медь 400 Лед 2100
Цинк 400 Керосин 2100
Латунь 400 Эфир 2350
Железо 460 Дерево (дуб) 2400
Сталь 500 Спирт 2500
Чугун 540 Вода 4200
Графит 750 Гелий 5200

Таблица 1. Удельные теплоемкости некоторых веществ.

Вода имеет почти самую большую теплоемкость в таблице – $4200 frac<Дж><кг cdot degree C>$. Это означает, что вода, находящаяся в морях и океанах, поглощает большое количество теплоты, нагреваясь летом. Зимой воды начинает остывать и отдавать большое количество теплоты. Поэтому, в местностях, которые расположены в непосредственной близости от воды, летом не бывает очень жарко, а зимой не бывает очень холодно. По этой же причине воду широко используют в технике (например, охлаждение деталей во время их обработки) и быту (отопительный системы помещений).

Песок имеет небольшую теплоемкость – $820 frac<Дж><кг cdot degree C>$. Он быстро нагревается и быстро остывает. Поэтому в пустыне днем очень жарко, а ночью температура может опуститься почти ниже $0 degree C$.

Удельная теплоемкость и агрегатные состояния вещества

Давайте взглянем в таблицу 1 и сравним значения удельной теплоемкости льда и воды.

Удельная теплоемкость льда – $ 2100 frac<Дж><кг cdot degree C>$, а воды – $4200 frac<Дж><кг cdot degree C>$. Но мы знаем, что одно и то же вещество в разных агрегатных состояниях.

Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна.

Например, при $-120 degree C$ ртуть будет находиться в твердом состоянии. Ее удельная теплоемкость будет равна $129 frac<Дж><кг cdot degree C>$. В жидком же состоянии удельная теплоемкость ртути равна $138 frac<Дж><кг cdot degree C>$.

Формула для расчёта удельной теплоёмкости вещества

Удельная теплоёмкость — это энергия, которая требуется для увеличения температуры 1 грамма чистого вещества на 1°. Параметр зависит от его химического состава и агрегатного состояния: газообразное, жидкое или твёрдое тело. После его открытия начался новый виток развития термодинамики, науки о переходных процессах энергии, которые касаются теплоты и функционирования системы.

Как правило, удельная теплоёмкость и основы термодинамики используются при изготовлении радиаторов и систем, предназначенных для охлаждения автомобилей, а также в химии, ядерной инженерии и аэродинамике. Если вы хотите узнать, как рассчитывается удельная теплоёмкость, то ознакомьтесь с предложенной статьёй.

Формула

Перед тем, как приступить к непосредственному расчёту параметра следует ознакомиться с формулой и её компонентами.

Формула для расчёта удельной теплоёмкости имеет следующий вид:

  • с = Q/(m*∆T)

Знание величин и их символических обозначений, использующихся при расчёте, крайне важно. Однако необходимо не только знать их визуальный вид, но и чётко представлять значение каждого из них. Расчёт удельной теплоёмкости вещества представлен следующими компонентами:

ΔT – символ, означающий постепенное изменение температуры вещества. Символ «Δ» произносится как дельта.

ΔT можно рассчитать по формуле:

  • t1 – первичная температура;
  • t2 – конечная температура после изменения.

m – масса вещества используемого при нагреве (гр).

Q – количество теплоты (Дж/J)

На основании Цр можно вывести и другие уравнения:

  • Q = m*цp*ΔT – количество теплоты ;
  • m = Q/цр*(t2 — t1) – массы вещества;
  • t1 = t2–(Q/цp*m) – первичной температуры;
  • t2 = t1+(Q/цp*m) – конечной температуры.

Инструкция по расчёту параметра

Рассчитать с вещества достаточно просто и чтобы это сделать нужно, выполнить следующие шаги:

  1. Взять расчётную формулу: Теплоемкость = Q/(m*∆T)
  2. Выписать исходные данные.
  3. Подставить их в формулу.
  4. Провести расчёт и получим результат.

В качестве примера произведём расчёт неизвестного вещества массой 480 грамм обладающего температурой 15ºC, которая в результате нагрева (подвода 35 тыс. Дж) увеличилась до 250º.

Согласно инструкции приведённой выше производим следующие действия:

Выписываем исходные данные:

  • Q = 35 тыс. Дж;
  • m = 480 г;
  • ΔT = t2–t1 =250–15 = 235 ºC.

Берём формулу, подставляем значения и решаем:

с=Q/(m*∆T)=35тыс.Дж/(480 г*235º)=35тыс.Дж/(112800 г*º)=0,31 Дж/г*º.

Теплоёмкость твёрдого тела

Расчёт

Выполним расчёт CP воды и олова при следующих условиях:

  • m = 500 грамм;
  • t1 =24ºC и t2 = 80ºC – для воды;
  • t1 =20ºC и t2 =180ºC – для олова;
  • Q = 28 тыс. Дж.

Для начала определяем ΔT для воды и олова соответственно:

  • ΔТв = t2–t1 = 80–24 = 56ºC
  • ΔТо = t2–t1 = 180–20 =160ºC

Затем находим удельную теплоёмкость:

  1. с=Q/(m*ΔТв)= 28 тыс. Дж/(500 г *56ºC) = 28 тыс.Дж/(28 тыс.г*ºC) = 1 Дж/г*ºC.
  2. с=Q/(m*ΔТо)=28тыс.Дж/(500 гр*160ºC)=28 тыс.Дж/(80 тыс.г*ºC)=0,35 Дж/г*ºC.

Таким образом, удельная теплоемкость воды составила 1 Дж/г *ºC, а олова 0,35 Дж/г*ºC. Отсюда можно сделать вывод о том, что при равном значении подводимого тепла в 28 тыс. Дж олово нагрется быстрее воды, поскольку его теплоёмкость меньше.

Теплоёмкостью обладают не только газы, жидкости и твёрдые тела, но и продукты питания.

Как рассчитать теплоемкость продуктов питания

При расчёте емкости питания уравнение примет следующий вид:

  • w – количество воды в продукте;
  • p – количество белков в продукте;
  • f – процентное содержание жиров;
  • c – процентное содержание углеводов;
  • a – процентное содержание неорганических компонентов.

Определим теплоемкость плавленого сливочного сыра Viola. Для этого выписываем нужные значения из состава продукта (масса 140 грамм):

Удельная теплоемкость что это

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q.

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

Количество теплоты

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.

количество теплоты

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты 2

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Удельная теплоёмкость

Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

Количество теплоты и удельная теплоемкость

Вместо словосочетания «тепловая энергия» физики говорят сокращенно: «теплота».

Удобно сравнивать между собой величины, которые измерены численно. Поэтому, физики говорят о количестве тепловой энергии, или количестве теплоты.

Что такое количество теплоты

Рассмотрим чашку, в которой находится обыкновенная вода комнатной температуры.

Вычислим внутреннюю энергию холодной воды в чашке, получим число, которое можно обозначить так:

(large U_> left( text <Дж>right) ) – внутренняя энергия холодной воды.

Нагреем воду в чашке. Молекулы нагретой воды будут двигаться быстрее. Значит, горячая вода обладает большим количеством внутренней энергии.

Теперь посчитаем внутреннюю энергию горячей воды в чашке. Полученное число обозначим, как

(large U_> left( text <Дж>right) ) – внутренняя энергия горячей воды.

Найдем разницу внутренней энергии для горячей и холодной воды.

Примечание: Вместо слова «разница» математики скажут «разность».

Мы получим еще одно число. Обозначим его символом Q. Число Q называют количеством теплоты. Именно эту тепловую энергию вода получила во время нагревания.

Примечание: Когда горячая вода остынет, она отдаст ровно столько тепловой энергии, сколько получила во время нагревания. Потому, что выполняется закон сохранения тепловой энергии.

(large Q left( text <Дж>right) ) – тепловая энергия, количество теплоты.

Теплота, как и любая энергия, измеряется в системе СИ в Джоулях, в честь английского физика Джеймса Джоуля.

Примечание: Количество теплоты, так же, измеряют в Калориях.

Калория – это тепловая энергия, затраченная на нагревание 1 грамма воды на 1 градус Цельсия.

Джоуль и Калория связаны так:

От чего зависит количество теплоты

Количество теплоты, требуемое для нагревания тела, зависит от нескольких параметров.

От массы вещества

Нальем в одну кастрюльку 1 кг воды, а в другую, точно такую же кастрюльку – 2 килограмма воды.

Пусть, начальная температура воды о обеих кастрюльках равна +20 градусам Цельсия.

Будем нагревать эти кастрюльки по очереди на газовой плите, не меняя интенсивность огня конфорки.

Предположим, нам нужно повысить на 50 градусов Цельсия температуру воды в каждой кастрюльке.

Примечание: После нагревания воды на 50 градусов, конечная температура воды в каждой кастрюльке будет равна 70 градусам.

Чтобы нагреть на 50 градусов 1 килограмм воды, потребуется время. Однако, чтобы нагреть на этой же конфорке 2 килограмма воды на 50 градусов, потребуется больше времени.

Значит, количество теплоты, полученное водой, зависит от массы вещества, которое мы хотим нагреть.

Математики запишут фразу «количество теплоты зависит от массы» так:

Символом f обозначается зависимость.

(large m left( text <кг>right) ) – масса нагреваемого вещества.

От разницы температур

Теперь возьмем две кастрюльки, и нальем в них по 1 кг воды. Начальная температура воды в кастрюльках одинаковая и равна +20 градусов Цельсия.

Одну кастрюльку будем нагревать дольше другой. Поэтому, температура воды будет выше в той кастрюльке, которую дольше нагревали.

Так как температура повысилась больше в кастрюльке, которую дольше нагревали, то физики скажут, что воде в этой кастрюльке передали большее количество теплоты.

Значит, количество теплоты зависит от разницы (т. е. разности) между начальной и конечной температурой.

(large t_> left( text <град>right) ) – температура после нагревания;

(large t_> left( text <град>right) ) – температура до нагревания;

(large Delta t left( text <град>right) ) – разность температуры;

Математики фразу «количество теплоты зависит от разности температур» запишут так:

[large Q = f(Delta t)]

Символ f обозначает, что Q зависит от разницы температур.

От вида вещества

Теперь будем нагревать 1 килограмм воды и 1 килограмм подсолнечного масла.

Первоначальная температура каждого вещества +20 градусов Цельсия.

Измерим через 5 минут нагревания температуру воды и температуру масла.

Оказывается, за 5 минут масло нагреется до более высокой температуры. При этом и масло, и вода, получили одинаковое количество теплоты.

Значит, количество теплоты зависит от того, из какого вещества состоит тело.

Какие величины называют удельными

Физики часто применяют удельные величины, так как они достаточно удобны для вычислений.

Удельная величина – величина, приходящаяся на единицу массы, длины, площади, или объема.

В обычной жизни мы, так же, пользуемся удельными величинами. К примеру, цена товара – это удельная величина, так как она приходится на единицу товара. Зная количество товара, легко посчитать общую цену покупки.

Например, булочка стоит 20 рублей. Нужно купить 3 булочки. Общую сумму денег найдем, перемножив цену одной булочки (удельную величину) на количество штук.

Известно, что при горении топлива выделяется энергия. Удельная теплота сгорания и количество сгоревших килограммов топлива помогут посчитать выделившуюся тепловую энергию.

Что такое удельная теплоемкость

Возьмем 1 килограмм вещества и нагреем его на 1 градус Цельсия. Тепловая энергия, которую мы для этого затратили, называется удельной теплоемкостью.

Удельная теплоемкость – это энергия, затраченная для нагревания 1 килограмма на 1 градус.

Эту энергию обозначают латинским символом «c». Измеряют ее в Джоулях, деленных на килограмм и градус.

(large c left( frac> cdot text<град>> right) ) – удельная теплоемкость;

Примечания:

  1. Вместо слов «тепловая энергия» физики скажут «количество теплоты»;
  2. Различные вещества обладают разными теплоемкостями;
  3. Одно и то же вещество в различных агрегатных состояниях (ссылка), будет иметь разные теплоемкости.

Удельные теплоемкости воды в различных агрегатных состояниях

В твердом состоянии (лед), вода будет иметь такую теплоемкость:

В жидком состоянии (вода), такую:

В газообразном состоянии (пар) при температуре 100 градусов Цельсия, такую:

Примечание: Удельные теплоемкости различных веществ можно найти в школьном справочнике физики.

Как связаны и чем отличаются количество теплоты и удельная теплоемкость

Будем рассматривать такие процессы, как нагревание и охлаждение.

  1. нагревание — тело получает тепловую энергию (количество теплоты).
  2. охлаждение – тело отдает тепловую энергию в окружающее пространство.

Благодаря процессам нагревания и охлаждения мы можем обогреваться зимой с помощью русской печи. Сначала печь получит количество теплоты (тепловую энергию) от сгорающего топлива — дров. А затем, будет остывать и отдавать это количество теплоты всем телам, находящимся в помещении.

Отличия удельной теплоемкости от количества теплоты

Запомнить, что такое количество теплоты, и чем оно отличается от удельной теплоемкости, можно так (рис. ):

  • Количество теплоты – это энергия нагревания (охлаждения) нескольких килограммов на несколько градусов.
  • Удельная теплоемкость – это энергия нагревания 1-го килограмма на 1 градус.

Связь количества теплоты и удельной теплоемкости — формула

  • удельная теплоемкость вещества;
  • количество килограммов вещества;
  • количество градусов, на которое нужно нагреть вещество,

то легко посчитать общую тепловую энергию – т. е. количество теплоты.

Для этого используем формулу:

(large Q left( text <Дж>right) ) – количество теплоты, т. е. общая тепловая энергия;

(large c left( frac> cdot text<град>> right) ) – удельная теплоемкость;

(large m left( text <кг>right) ) – масса вещества;

(large t_> left( text <град>right) ) – температура после нагревания;

(large t_> left( text <град>right) ) – температура до нагревания;

Как по графику нагревания или охлаждения определить удельную теплоемкость

На примере покажем, как находить удельную теплоемкость по графику нагревания или охлаждения тела.

Дано твердое тело массой 2 килограмма. На рисунке 5 указано, как зависит температура этого тела от полученного количества теплоты. По горизонтали отложено количество теплоты, а по вертикали – температура некоторого тела, находящегося в твердом состоянии.

Определить удельную теплоемкость вещества, из которого состоит данное твердое тело.

Решение:

Тело нагрелось от (large t_ <1>= 0 left( С right) ) до температуры (large t_ <2>= 60 left( С right) );

Разность температур равна 60 градусам Цельсия.

Масса тела 2 килограмма.

Полученное количество теплоты (large Q = 15000 left( text <Дж>right) ).

Выпишем формулу, по которой можно посчитать тепловую энергию Q:

Подставим теперь значения в эту формулу для определения количества теплоты:

[large 15000 = c cdot 2 cdot 60 ]

Разделим обе части уравнения на число 10:

[large 1500 = c cdot 2 cdot 6 ]

Теперь разделим обе части уравнения на число 6:

[large 250 = c cdot 2 ]

Разделив обе части на число 2, получим удельную теплоемкость твердого вещества:

Ответ: Удельная теплоемкость твердого вещества (large 125 left( frac> cdot text<град>> right) )

Примечание: Тела могут обмениваться тепловой энергией с другими телами. Обмен энергией прекратится при наступлении теплового равновесия. Для решения задач нужно использовать удельные теплоемкости материалов, из которых изготовлены тела. А чтобы рассчитать переданное или полученное телом количество теплоты, нужно уметь применять закон сохранения энергии и составлять уравнение теплового баланса.

Количество теплоты. Удельная теплоёмкость

1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты.

Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.

Количество теплоты обозначают буквой ​ ( Q ) ​. Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.

​3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной ​ ( (t_2,^circ C) ) ​ и начальной ( (t_1,^circ C) ) температур: ​ ( Qsim(t_2-t_1) ) ​.

4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.

5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.

Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой ​ ( c ) ​. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.

Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты ​ ( Q ) ​, необходимое для нагревания тела массой ​ ( m ) ​ от температуры ( (t_1,^circ C) ) до температуры ( (t_2,^circ C) ) , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

​По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

6. Пример решения задачи. В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?

При решении задачи необходимо выполнять следующую последовательность действий:

  1. записать кратко условие задачи;
  2. перевести значения величин в СИ;
  3. проанализировать задачу, установить, какие тела участвуют в теплообмене, какие тела отдают энергию, а какие получают;
  4. решить задачу в общем виде;
  5. выполнить вычисления;
  6. проанализировать полученный ответ.

1. Условие задачи.

Дано:
​ ( m_1 ) ​ = 200 г
​ ( m_2 ) ​ = 100 г
​ ( t_1 ) ​ = 80 °С
​ ( t_2 ) ​ = 20 °С
​ ( t ) ​ = 60 °С
______________

​ ( Q_1 ) ​ — ? ​ ( Q_2 ) ​ — ?
​ ( c_1 ) ​ = 4200 Дж/кг · °С

2. СИ: ​ ( m_1 ) ​ = 0,2 кг; ​ ( m_2 ) ​ = 0,1 кг.

3. Анализ задачи. В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты ​ ( Q_1 ) ​ и охлаждается от температуры ​ ( t_1 ) ​ до температуры ​ ( t ) ​. Холодная вода получает количество теплоты ​ ( Q_2 ) ​ и нагревается от температуры ​ ( t_2 ) ​ до температуры ​ ( t ) ​.

4. Решение задачи в общем виде. Количество теплоты, отданное горячей водой, вычисляется по формуле: ​ ( Q_1=c_1m_1(t_1-t) ) ​.

Количество теплоты, полученное холодной водой, вычисляется по формуле: ( Q_2=c_2m_2(t-t_2) ) .

5. Вычисления.
​ ( Q_1 ) ​ = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж
( Q_2 ) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж

6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?

1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж
2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж
3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж
4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж

2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что

1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж
2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж
3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии
4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж

3. При передаче твёрдому телу массой ​ ( m ) ​ количества теплоты ​ ( Q ) ​ температура тела повысилась на ​ ( Delta t^circ ) ​. Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?

4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости (​ ( c_1 ) ​ и ​ ( c_2 ) ​) веществ, из которых сделаны эти тела.

1) ​ ( c_1=c_2 ) ​
2) ​ ( c_1>c_2 ) ​
3) ( c_1<c_2 )
4) ответ зависит от значения массы тел

5. На диаграмме представлены значения количества теплоты, переданного двум телам равной массы при изменении их температуры на одно и то же число градусов. Какое соотношение для удельных теплоёмкостей веществ, из которых изготовлены тела, является верным?

1) ( c_1=c_2 )
2) ( c_1=3c_2 )
3) ( c_2=3c_1 )
4) ( c_2=2c_1 )

6. На рисунке представлен график зависимости температуры твёрдого тела от отданного им количества теплоты. Масса тела 4 кг. Чему равна удельная теплоёмкость вещества этого тела?

1) 500 Дж/(кг · °С)
2) 250 Дж/(кг · °С)
3) 125 Дж/(кг · °С)
4) 100 Дж/(кг · °С)

7. При нагревании кристаллического вещества массой 100 г измеряли температуру вещества и количество теплоты, сообщённое веществу. Данные измерений представили в виде таблицы. Считая, что потерями энергии можно пренебречь, определите удельную теплоёмкость вещества в твёрдом состоянии.

1) 192 Дж/(кг · °С)
2) 240 Дж/(кг · °С)
3) 576 Дж/(кг · °С)
4) 480 Дж/(кг · °С)

8. Чтобы нагреть 192 г молибдена на 1 К, нужно передать ему количество теплоты 48 Дж. Чему равна удельная теплоёмкость этого вещества?

1) 250 Дж/(кг · К)
2) 24 Дж/(кг · К)
3) 4·10 -3 Дж/(кг · К)
4) 0,92 Дж/(кг · К)

9. Какое количество теплоты необходимо для нагревания 100 г свинца от 27 до 47 °С?

1) 390 Дж
2) 26 кДж
3) 260 Дж
4) 390 кДж

10. На нагревание кирпича от 20 до 85 °С затрачено такое же количество теплоты, как для нагревания воды такой же массы на 13 °С. Удельная теплоёмкость кирпича равна

1) 840 Дж/(кг · К)
2) 21000 Дж/(кг · К)
3) 2100 Дж/(кг · К)
4) 1680 Дж/(кг · К)

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Количество теплоты, которое тело получает при повышении его температуры на некоторое число градусов, равно количеству теплоты, которое это тело отдаёт при понижении его температуры на такое же число градусов.
2) При охлаждении вещества его внутренняя энергия увеличивается.
3) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение кинетической энергии его молекул.
4) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение потенциальной энергии взаимодействия его молекул
5) Внутреннюю энергию тела можно изменить, только сообщив ему некоторое количество теплоты

12. В таблице представлены результаты измерений массы ​ ( m ) ​, изменения температуры ​ ( Delta t ) ​ и количества теплоты ​ ( Q ) ​, выделяющегося при охлаждении цилиндров, изготовленных из меди или алюминия.

Какие утверждения соответствуют результатам проведённого эксперимента? Из предложенного перечня выберите два правильных. Укажите их номера. На основании проведенных измерений можно утверждать, что количество теплоты, выделяющееся при охлаждении,

1) зависит от вещества, из которого изготовлен цилиндр.
2) не зависит от вещества, из которого изготовлен цилиндр.
3) увеличивается при увеличении массы цилиндра.
4) увеличивается при увеличении разности температур.
5) удельная теплоёмкость алюминия в 4 раза больше, чем удельная теплоёмкость олова.

Часть 2

C1.Твёрдое тело массой 2 кг помещают в печь мощностью 2 кВт и начинают нагревать. На рисунке изображена зависимость температуры ​ ( t ) ​ этого тела от времени нагревания ​ ( tau ) ​. Чему равна удельная теплоёмкость вещества?

1) 400 Дж/(кг · °С)
2) 200 Дж/(кг · °С)
3) 40 Дж/(кг · °С)
4) 20 Дж/(кг · °С)

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: